2018
Michael A Lodato, Rachel E Rodin, Craig L Bohrson, Michael E Coulter, Alison R Barton, Minseok Kwon, Maxwell A Sherman, Carl M Vitzthum, Lovelace J Luquette, Chandri N Yandava, Pengwei Yang, Thomas W Chittenden, Nicole E Hatem, Steven C Ryu, Mollie B Woodworth, Peter J Park, and Christopher A Walsh. 2018. “
Aging and neurodegeneration are associated with increased mutations in single human neurons.” Science, 359, 6375, Pp. 555-559.
AbstractIt has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.
George Karystianis, Alejo J Nevado, Chi-Hun Kim, Azad Dehghan, John A Keane, and Goran Nenadic. 2018. “
Automatic mining of symptom severity from psychiatric evaluation notes.” Int J Methods Psychiatr Res, 27, 1.
AbstractOBJECTIVES: As electronic mental health records become more widely available, several approaches have been suggested to automatically extract information from free-text narrative aiming to support epidemiological research and clinical decision-making. In this paper, we explore extraction of explicit mentions of symptom severity from initial psychiatric evaluation records. We use the data provided by the 2016 CEGS N-GRID NLP shared task Track 2, which contains 541 records manually annotated for symptom severity according to the Research Domain Criteria. METHODS: We designed and implemented 3 automatic methods: a knowledge-driven approach relying on local lexicalized rules based on common syntactic patterns in text suggesting positive valence symptoms; a machine learning method using a neural network; and a hybrid approach combining the first 2 methods with a neural network. RESULTS: The results on an unseen evaluation set of 216 psychiatric evaluation records showed a performance of 80.1% for the rule-based method, 73.3% for the machine-learning approach, and 72.0% for the hybrid one. CONCLUSIONS: Although more work is needed to improve the accuracy, the results are encouraging and indicate that automated text mining methods can be used to classify mental health symptom severity from free text psychiatric notes to support epidemiological and clinical research.
Thomas H McCoy, Victor M Castro, Kamber L Hart, Amelia M Pellegrini, Sheng Yu, Tianxi Cai, and Roy H Perlis. 2018. “
Genome-wide Association Study of Dimensional Psychopathology Using Electronic Health Records.” Biol Psychiatry.
AbstractBACKGROUND: Genetic studies of neuropsychiatric disease strongly suggest an overlap in liability. There are growing efforts to characterize these diseases dimensionally rather than categorically, but the extent to which such dimensional models correspond to biology is unknown. METHODS: We applied a newly developed natural language processing method to extract five symptom dimensions based on the National Institute of Mental Health Research Domain Criteria definitions from narrative hospital discharge notes in a large biobank. We conducted a genome-wide association study to examine whether common variants were associated with each of these dimensions as quantitative traits. RESULTS: Among 4687 individuals, loci in three of five domains exceeded a genome-wide threshold for statistical significance. These included a locus spanning the neocortical development genes RFPL3 and RFPL3S for arousal (p = 2.29 × 10) and one spanning the FPR3 gene for cognition (p = 3.22 × 10). CONCLUSIONS: Natural language processing identifies dimensional phenotypes that may facilitate the discovery of common genetic variation that is relevant to psychopathology.
Thomas H McCoy, Sheng Yu, Kamber L Hart, Victor M Castro, Hannah E Brown, James N Rosenquist, Alysa E Doyle, Pieter J Vuijk, Tianxi Cai, and Roy H Perlis. 2018. “
High Throughput Phenotyping for Dimensional Psychopathology in Electronic Health Records.” Biol Psychiatry.
AbstractBACKGROUND: Relying on diagnostic categories of neuropsychiatric illness obscures the complexity of these disorders. Capturing multiple dimensional measures of neuropathology could facilitate the clinical and neurobiological investigation of cognitive and behavioral phenotypes. METHODS: We developed a natural language processing-based approach to extract five symptom dimensions, based on the National Institute of Mental Health Research Domain Criteria definitions, from narrative clinical notes. Estimates of Research Domain Criteria loading were derived from a cohort of 3619 individuals with 4623 hospital admissions. We applied this tool to a large corpus of psychiatric inpatient admission and discharge notes (2010-2015), and using the same cohort we examined face validity, predictive validity, and convergent validity with gold standard annotations. RESULTS: In mixed-effect models adjusted for sociodemographic and clinical features, greater negative and positive symptom domains were associated with a shorter length of stay (β = -.88, p = .001 and β = -1.22, p < .001, respectively), while greater social and arousal domain scores were associated with a longer length of stay (β = .93, p < .001 and β = .81, p = .007, respectively). In fully adjusted Cox regression models, a greater positive domain score at discharge was also associated with a significant increase in readmission risk (hazard ratio = 1.22, p < .001). Positive and negative valence domains were correlated with expert annotation (by analysis of variance [df = 3], R = .13 and .19, respectively). Likewise, in a subset of patients, neurocognitive testing was correlated with cognitive performance scores (p < .008 for three of six measures). CONCLUSIONS: This shows that natural language processing can be used to efficiently and transparently score clinical notes in terms of cognitive and psychopathologic domains.
Blue B Lake, Song Chen, Brandon C Sos, Jean Fan, Gwendolyn E Kaeser, Yun C Yung, Thu E Duong, Derek Gao, Jerold Chun, Peter V Kharchenko, and Kun Zhang. 2018. “
Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain.” Nat Biotechnol, 36, 1, Pp. 70-80.
AbstractDetailed characterization of the cell types in the human brain requires scalable experimental approaches to examine multiple aspects of the molecular state of individual cells, as well as computational integration of the data to produce unified cell-state annotations. Here we report improved high-throughput methods for single-nucleus droplet-based sequencing (snDrop-seq) and single-cell transposome hypersensitive site sequencing (scTHS-seq). We used each method to acquire nuclear transcriptomic and DNA accessibility maps for >60,000 single cells from human adult visual cortex, frontal cortex, and cerebellum. Integration of these data revealed regulatory elements and transcription factors that underlie cell-type distinctions, providing a basis for the study of complex processes in the brain, such as genetic programs that coordinate adult remyelination. We also mapped disease-associated risk variants to specific cellular populations, which provided insights into normal and pathogenic cellular processes in the human brain. This integrative multi-omics approach permits more detailed single-cell interrogation of complex organs and tissues.
Yin Xia, Tianxi Cai, and Tony T Cai. 2018. “
Two-Sample Tests for High-Dimensional Linear Regression with an Application to Detecting Interactions.” Stat Sin, 28, Pp. 63-92.
AbstractMotivated by applications in genomics, we consider in this paper global and multiple testing for the comparisons of two high-dimensional linear regression models. A procedure for testing the equality of the two regression vectors globally is proposed and shown to be particularly powerful against sparse alternatives. We then introduce a multiple testing procedure for identifying unequal coordinates while controlling the false discovery rate and false discovery proportion. Theoretical justifications are provided to guarantee the validity of the proposed tests and optimality results are established under sparsity assumptions on the regression coefficients. The proposed testing procedures are easy to implement. Numerical properties of the procedures are investigated through simulation and data analysis. The results show that the proposed tests maintain the desired error rates under the null and have good power under the alternative at moderate sample sizes. The procedures are applied to the Framingham Offspring study to investigate the interactions between smoking and cardiovascular related genetic mutations important for an inflammation marker.
2017
Carson Tao, Michele Filannino, and Özlem Uzuner. 2017. “
Prescription extraction using CRFs and word embeddings.” J Biomed Inform, 72, Pp. 60-66.
AbstractIn medical practices, doctors detail patients' care plan via discharge summaries written in the form of unstructured free texts, which among the others contain medication names and prescription information. Extracting prescriptions from discharge summaries is challenging due to the way these documents are written. Handwritten rules and medical gazetteers have proven to be useful for this purpose but come with limitations on performance, scalability, and generalizability. We instead present a machine learning approach to extract and organize medication names and prescription information into individual entries. Our approach utilizes word embeddings and tackles the task in two extraction steps, both of which are treated as sequence labeling problems. When evaluated on the 2009 i2b2 Challenge official benchmark set, the proposed approach achieves a horizontal phrase-level F1-measure of 0.864, which to the best of our knowledge represents an improvement over the current state-of-the-art.
Denis Agniel and Tianxi Cai. 2017. “
Analysis of multiple diverse phenotypes via semiparametric canonical correlation analysis.” Biometrics, 73, 4, Pp. 1254-1265.
AbstractStudying multiple outcomes simultaneously allows researchers to begin to identify underlying factors that affect all of a set of diseases (i.e., shared etiology) and what may give rise to differences in disorders between patients (i.e., disease subtypes). In this work, our goal is to build risk scores that are predictive of multiple phenotypes simultaneously and identify subpopulations at high risk of multiple phenotypes. Such analyses could yield insight into etiology or point to treatment and prevention strategies. The standard canonical correlation analysis (CCA) can be used to relate multiple continuous outcomes to multiple predictors. However, in order to capture the full complexity of a disorder, phenotypes may include a diverse range of data types, including binary, continuous, ordinal, and censored variables. When phenotypes are diverse in this way, standard CCA is not possible and no methods currently exist to model them jointly. In the presence of such complications, we propose a semi-parametric CCA method to develop risk scores that are predictive of multiple phenotypes. To guard against potential model mis-specification, we also propose a nonparametric calibration method to identify subgroups that are at high risk of multiple disorders. A resampling procedure is also developed to account for the variability in these estimates. Our method opens the door to synthesizing a wide array of data sources for the purposes of joint prediction.
Cheryl Clark, Ben Wellner, Rachel Davis, John Aberdeen, and Lynette Hirschman. 2017. “
Automatic classification of RDoC positive valence severity with a neural network.” J Biomed Inform, 75S, Pp. S120-S128.
AbstractOBJECTIVE: Our objective was to develop a machine learning-based system to determine the severity of Positive Valance symptoms for a patient, based on information included in their initial psychiatric evaluation. Severity was rated on an ordinal scale of 0-3 as follows: 0 (absent=no symptoms), 1 (mild=modest significance), 2 (moderate=requires treatment), 3 (severe=causes substantial impairment) by experts. MATERIALS AND METHODS: We treated the task of assigning Positive Valence severity as a text classification problem. During development, we experimented with regularized multinomial logistic regression classifiers, gradient boosted trees, and feedforward, fully-connected neural networks. We found both regularization and feature selection via mutual information to be very important in preventing models from overfitting the data. Our best configuration was a neural network with three fully connected hidden layers with rectified linear unit activations. RESULTS: Our best performing system achieved a score of 77.86%. The evaluation metric is an inverse normalization of the Mean Absolute Error presented as a percentage number between 0 and 100, where 100 means the highest performance. Error analysis showed that 90% of the system errors involved neighboring severity categories. CONCLUSION: Machine learning text classification techniques with feature selection can be trained to recognize broad differences in Positive Valence symptom severity with a modest amount of training data (in this case 600 documents, 167 of which were unannotated). An increase in the amount of annotated data can increase accuracy of symptom severity classification by several percentage points. Additional features and/or a larger training corpus may further improve accuracy.
Travis R Goodwin, Ramon Maldonado, and Sanda M Harabagiu. 2017. “
Automatic recognition of symptom severity from psychiatric evaluation records.” J Biomed Inform, 75S, Pp. S71-S84.
AbstractThis paper presents a novel method for automatically recognizing symptom severity by using natural language processing of psychiatric evaluation records to extract features that are processed by machine learning techniques to assign a severity score to each record evaluated in the 2016 RDoC for Psychiatry Challenge from CEGS/N-GRID. The natural language processing techniques focused on (a) discerning the discourse information expressed in questions and answers; (b) identifying medical concepts that relate to mental disorders; and (c) accounting for the role of negation. The machine learning techniques rely on the assumptions that (1) the severity of a patient's positive valence symptoms exists on a latent continuous spectrum and (2) all the patient's answers and narratives documented in the psychological evaluation records are informed by the patient's latent severity score along this spectrum. These assumptions motivated our two-step machine learning framework for automatically recognizing psychological symptom severity. In the first step, the latent continuous severity score is inferred from each record; in the second step, the severity score is mapped to one of the four discrete severity levels used in the CEGS/N-GRID challenge. We evaluated three methods for inferring the latent severity score associated with each record: (i) pointwise ridge regression; (ii) pairwise comparison-based classification; and (iii) a hybrid approach combining pointwise regression and the pairwise classifier. The second step was implemented using a tree of cascading support vector machine (SVM) classifiers. While the official evaluation results indicate that all three methods are promising, the hybrid approach not only outperformed the pairwise and pointwise methods, but also produced the second highest performance of all submissions to the CEGS/N-GRID challenge with a normalized MAE score of 84.093% (where higher numbers indicate better performance). These evaluation results enabled us to observe that, for this task, considering pairwise information can produce more accurate severity scores than pointwise regression - an approach widely used in other systems for assigning severity scores. Moreover, our analysis indicates that using a cascading SVM tree outperforms traditional SVM classification methods for the purpose of determining discrete severity levels.
Ava C Carter, Howard Y Chang, George Church, Ashley Dombkowski, Joseph R Ecker, Elad Gil, Paul G Giresi, Henry Greely, William J Greenleaf, Nir Hacohen, Chuan He, David Hill, Justin Ko, Isaac Kohane, Anshul Kundaje, Megan Palmer, Michael P Snyder, Joyce Tung, Alexander Urban, Marc Vidal, and Wing Wong. 2017. “
Challenges and recommendations for epigenomics in precision health.” Nat Biotechnol, 35, 12, Pp. 1128-1132.
Ariel Feiglin, Bryce K Allen, Isaac S Kohane, and Sek Won Kong. 2017. “
Comprehensive Analysis of Tissue-wide Gene Expression and Phenotype Data Reveals Tissues Affected in Rare Genetic Disorders.” Cell Syst, 5, 2, Pp. 140-148.e2.
AbstractLinking putatively pathogenic variants to the tissues they affect is necessary for determining the correct diagnostic workup and therapeutic regime in undiagnosed patients. Here, we explored how gene expression across healthy tissues can be used to infer this link. We integrated 6,665 tissue-wide transcriptomes with genetic disorder knowledge bases covering 3,397 diseases. Receiver-operating characteristics (ROC) analysis using expression levels in each tissue and across tissues indicated significant but modest associations between elevated expression and phenotype for most tissues (maximum area under ROC curve = 0.69). At extreme elevation, associations were marked. Upregulation of disease genes in affected tissues was pronounced for genes associated with autosomal dominant over recessive disorders. Pathways enriched for genes expressed and associated with phenotypes highlighted tissue functionality, including lipid metabolism in spleen and DNA repair in adipose tissue. These results suggest features useful for evaluating the likelihood of particular tissue manifestations in genetic disorders. The web address of an interactive platform integrating these data is provided.
Elyne Scheurwegs, Madhumita Sushil, Stéphan Tulkens, Walter Daelemans, and Kim Luyckx. 2017. “
Counting trees in Random Forests: Predicting symptom severity in psychiatric intake reports.” J Biomed Inform, 75S, Pp. S112-S119.
AbstractThe CEGS N-GRID 2016 Shared Task (Filannino et al., 2017) in Clinical Natural Language Processing introduces the assignment of a severity score to a psychiatric symptom, based on a psychiatric intake report. We present a method that employs the inherent interview-like structure of the report to extract relevant information from the report and generate a representation. The representation consists of a restricted set of psychiatric concepts (and the context they occur in), identified using medical concepts defined in UMLS that are directly related to the psychiatric diagnoses present in the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) ontology. Random Forests provides a generalization of the extracted, case-specific features in our representation. The best variant presented here scored an inverse mean absolute error (MAE) of 80.64%. A concise concept-based representation, paired with identification of concept certainty and scope (family, patient), shows a robust performance on the task.
Zengjian Liu, Buzhou Tang, Xiaolong Wang, and Qingcai Chen. 2017. “
De-identification of clinical notes via recurrent neural network and conditional random field.” J Biomed Inform, 75S, Pp. S34-S42.
AbstractDe-identification, identifying information from data, such as protected health information (PHI) present in clinical data, is a critical step to enable data to be shared or published. The 2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-scale and RDOC Individualized Domains (N-GRID) clinical natural language processing (NLP) challenge contains a de-identification track in de-identifying electronic medical records (EMRs) (i.e., track 1). The challenge organizers provide 1000 annotated mental health records for this track, 600 out of which are used as a training set and 400 as a test set. We develop a hybrid system for the de-identification task on the training set. Firstly, four individual subsystems, that is, a subsystem based on bidirectional LSTM (long-short term memory, a variant of recurrent neural network), a subsystem-based on bidirectional LSTM with features, a subsystem based on conditional random field (CRF) and a rule-based subsystem, are used to identify PHI instances. Then, an ensemble learning-based classifiers is deployed to combine all PHI instances predicted by above three machine learning-based subsystems. Finally, the results of the ensemble learning-based classifier and the rule-based subsystem are merged together. Experiments conducted on the official test set show that our system achieves the highest micro F1-scores of 93.07%, 91.43% and 95.23% under the "token", "strict" and "binary token" criteria respectively, ranking first in the 2016 CEGS N-GRID NLP challenge. In addition, on the dataset of 2014 i2b2 NLP challenge, our system achieves the highest micro F1-scores of 96.98%, 95.11% and 98.28% under the "token", "strict" and "binary token" criteria respectively, outperforming other state-of-the-art systems. All these experiments prove the effectiveness of our proposed method.
Zhipeng Jiang, Chao Zhao, Bin He, Yi Guan, and Jingchi Jiang. 2017. “
De-identification of medical records using conditional random fields and long short-term memory networks.” J Biomed Inform, 75S, Pp. S43-S53.
AbstractThe CEGS N-GRID 2016 Shared Task 1 in Clinical Natural Language Processing focuses on the de-identification of psychiatric evaluation records. This paper describes two participating systems of our team, based on conditional random fields (CRFs) and long short-term memory networks (LSTMs). A pre-processing module was introduced for sentence detection and tokenization before de-identification. For CRFs, manually extracted rich features were utilized to train the model. For LSTMs, a character-level bi-directional LSTM network was applied to represent tokens and classify tags for each token, following which a decoding layer was stacked to decode the most probable protected health information (PHI) terms. The LSTM-based system attained an i2b2 strict micro-F measure of 0.8986, which was higher than that of the CRF-based system.
Amber Stubbs, Michele Filannino, and Özlem Uzuner. 2017. “
De-identification of psychiatric intake records: Overview of 2016 CEGS N-GRID shared tasks Track 1.” J Biomed Inform, 75S, Pp. S4-S18.
AbstractThe 2016 CEGS N-GRID shared tasks for clinical records contained three tracks. Track 1 focused on de-identification of a new corpus of 1000 psychiatric intake records. This track tackled de-identification in two sub-tracks: Track 1.A was a "sight unseen" task, where nine teams ran existing de-identification systems, without any modifications or training, on 600 new records in order to gauge how well systems generalize to new data. The best-performing system for this track scored an F1 of 0.799. Track 1.B was a traditional Natural Language Processing (NLP) shared task on de-identification, where 15 teams had two months to train their systems on the new data, then test it on an unannotated test set. The best-performing system from this track scored an F1 of 0.914. The scores for Track 1.A show that unmodified existing systems do not generalize well to new data without the benefit of training data. The scores for Track 1.B are slightly lower than the 2014 de-identification shared task (which was almost identical to 2016 Track 1.B), indicating that these new psychiatric records pose a more difficult challenge to NLP systems. Overall, de-identification is still not a solved problem, though it is important to the future of clinical NLP.
Begum Alural, Sermin Genc, and Stephen J Haggarty. 2017. “
Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present, and future.” Prog Neuropsychopharmacol Biol Psychiatry, 73, Pp. 87-103.
AbstractNeuropsychiatric disorders are common health problems affecting approximately 1% of the population. Twin, adoption, and family studies have displayed a strong genetic component for many of these disorders; however, the underlying pathophysiological mechanisms and neural substrates remain largely unknown. Given the critical need for new diagnostic markers and disease-modifying treatments, expanding the focus of genomic studies of neuropsychiatric disorders to include the role of non-coding RNAs (ncRNAs) is of growing interest. Of known types of ncRNAs, microRNAs (miRNAs) are 20-25-nucleotide, single-stranded, molecules that regulate gene expression through post-transcriptional mechanisms and have the potential to coordinately regulate complex regulatory networks. In this review, we summarize the current knowledge on miRNA alteration/dysregulation in neuropsychiatric disorders, with a special emphasis on schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). With an eye toward the future, we also discuss the diagnostic and prognostic potential of miRNAs for neuropsychiatric disorders in the context of personalized treatments and network medicine.
Hong-Jie Dai, Emily Chia-Yu Su, Mohy Uddin, Jitendra Jonnagaddala, Chi-Shin Wu, and Shabbir Syed-Abdul. 2017. “
Exploring associations of clinical and social parameters with violent behaviors among psychiatric patients.” J Biomed Inform, 75S, Pp. S149-S159.
AbstractEvidence has revealed interesting associations of clinical and social parameters with violent behaviors of patients with psychiatric disorders. Men are more violent preceding and during hospitalization, whereas women are more violent than men throughout the 3days following a hospital admission. It has also been proven that mental disorders may be a consistent risk factor for the occurrence of violence. In order to better understand violent behaviors of patients with psychiatric disorders, it is important to investigate both the clinical symptoms and psychosocial factors that accompany violence in these patients. In this study, we utilized a dataset released by the Partners Healthcare and Neuropsychiatric Genome-scale and RDoC Individualized Domains project of Harvard Medical School to develop a unique text mining pipeline that processes unstructured clinical data in order to recognize clinical and social parameters such asage, gender, history of alcohol use, and violent behaviors, and explored the associations between these parameters and violent behaviors of patients with psychiatric disorders. The aim of our work was to demonstrate the feasibility of mining factors that are strongly associated with violent behaviors among psychiatric patients from unstructured psychiatric evaluation records using clinical text mining. Experiment results showed that stimulants, followed by a family history of violent behavior, suicidal behaviors, and financial stress were strongly associated with violent behaviors. Key aspects explicated in this paper include employing our text mining pipeline to extract clinical and social factors linked with violent behaviors, generating association rules to uncover possible associations between these factors and violent behaviors, and lastly the ranking of top rules associated with violent behaviors using statistical analysis and interpretation.
Hee-Jin Lee, Yonghui Wu, Yaoyun Zhang, Jun Xu, Hua Xu, and Kirk Roberts. 2017. “
A hybrid approach to automatic de-identification of psychiatric notes.” J Biomed Inform, 75S, Pp. S19-S27.
AbstractDe-identification, or identifying and removing protected health information (PHI) from clinical data, is a critical step in making clinical data available for clinical applications and research. This paper presents a natural language processing system for automatic de-identification of psychiatric notes, which was designed to participate in the 2016 CEGS N-GRID shared task Track 1. The system has a hybrid structure that combines machine leaning techniques and rule-based approaches. The rule-based components exploit the structure of the psychiatric notes as well as characteristic surface patterns of PHI mentions. The machine learning components utilize supervised learning with rich features. In addition, the system performance was boosted with integration of additional data to the training set through domain adaptation. The hybrid system showed overall micro-averaged F-score 90.74 on the test set, second-best among all the participants of the CEGS N-GRID task.
Azad Dehghan, Aleksandar Kovacevic, George Karystianis, John A Keane, and Goran Nenadic. 2017. “
Learning to identify Protected Health Information by integrating knowledge- and data-driven algorithms: A case study on psychiatric evaluation notes.” J Biomed Inform, 75S, Pp. S28-S33.
AbstractDe-identification of clinical narratives is one of the main obstacles to making healthcare free text available for research. In this paper we describe our experience in expanding and tailoring two existing tools as part of the 2016 CEGS N-GRID Shared Tasks Track 1, which evaluated de-identification methods on a set of psychiatric evaluation notes for up to 25 different types of Protected Health Information (PHI). The methods we used rely on machine learning on either a large or small feature space, with additional strategies, including two-pass tagging and multi-class models, which both proved to be beneficial. The results show that the integration of the proposed methods can identify Health Information Portability and Accountability Act (HIPAA) defined PHIs with overall F-scores of ∼90% and above. Yet, some classes (Profession, Organization) proved again to be challenging given the variability of expressions used to reference given information.